
55

Incorporating Disks Chapter 3:	
into VxVM
by Volker Herminghaus

In the previous chapter you gained an overview over what the concept behind Veritas
Volume Manager (or VxVM) is, what storage objects are used and how they act together to
form a complete volume management layer. So now, after the extensive problem introduc-
tion in chapter one and the in-depth look at VxVM objects from chapter two, let us get
some actual work done. We will start with a machine that is already running VxVM, go
through all steps necessary to incorporate a new disk into a VxVM disk group and discuss
what is going on as well as alternative ways to do it.

V. Herminghaus and A. Sriba, Storage Management in Data Centers,

DOI: 10.1007/978-3-540-85023-6_3, © Springer-Verlag Berlin Heidelberg 2009

56

Incorporating Disks into VxVM

Easy
Sailing

Vx

Solaris Disk Handling3.1	

Getting a New Disk into Solaris3.1.1	

Once VxVM has been successfully installed and configured the command vxdisk list
shows all disks attached to the system and known to VxVM. Attaching a new disk (or LUN,
remember the two are the same to VxVM) to a Solaris machine does not make that device
visible to the operating system. What is necessary in order for the OS to see a new disk?
First of all the OS needs a device driver which it can use to physically "talk" to the HBA
(host bus adapter) to which the disk is attached. We will assume for now that the HBA
driver is already installed. The machine obviously also needs a SCSI protocol driver to use
on top of the HBA driver so it can talk SCSI protocol with the disk. The SCSI driver is always
installed, otherwise we would not have been able to boot from a SCSI disk. Theoretically, if
you boot from a network or other non-SCSI device you could actually be missing the SCSI
driver, but unless something really weird happened the SCSI driver would be automatically
loaded by the kernel as soon as it is required. So let us pretend we have both the HBA and
the SCSI protocol driver installed in the system already.

Now we physically connect a new disk device (or zone a new LUN) to the system.
Does this make Solaris recognize the new device? Of course it does not. Even a reboot
will go no step towards making the disk visible, unless we supply the reconfigure-flag
(reboot -- -r) or create a file named /reconfigure before booting in order to make
Solaris actually look for new devices. But we do not need to actually reboot; this would
be quite an insult to the operating system, so to speak. What the OS (Solaris 9; 10
skips the first step) does when it boots in reconfigure mode is execute the command
luxadm -e create_fabric_device to re-acquire FC targets that were previously configured
by the admin using cfgadm and whose WWPNs (World Wide Port Names) the cfgadm com-
mand stored in /etc/cfg/fp/fabric_WWN_map. After these luxadm commands it eventually
calls the command devfsadm. This command instructs the device file system configuration

57

Solaris Disk Handling

daemon process to inquire all devices on all controllers and check for new devices as well
as ones that have been lost. For the new devices it will then create device nodes in /dev
and /devices so that the device will be accessible via the UNIX file system tree.

This is when VxVM first gets a chance to see the device. Unless a valid device file exists
Volume Manager cannot access the disk, nor can it somehow miraculously see things that
the OS does not see or fix things that the OS cannot fix. VxVM, like any other product, first
requires that the OS be capable of physical access to the device.

You Don't Format with "format"3.1.2	

Now that the OS sees the disk device we can almost switch to purely using VxVM com-
mands so that we can finally get rid of all that physical disk legacy. But first, one more
thing needs to be done by operating system means, and that is to format the disk, i.e. to
put a valid Solaris label (or VTOC) on it so that the higher software layers can not just
read and write individual blocks of the disk, but can actually get some reasonable meta
information about it, like its size, number and locations of partitions etc. Why can that
not be done without a valid label? The reason is actually very simple: When devfsadm finds
a new disk and creates its device node it does not create just one device file but eight;
one for each slice. Now imagine your new LUN is a re-used one from some antique, crufty
operating system that stores some arcane partition table in block zero of the disk. We get
this new LUN into our system, devfsadm creates eight device files so we can access each
of the Solaris slices that can be registered in the VTOC block. But alas, there is not a single
usable partition on this former Windows (or other) disk. All we can see is illegible stuff
in an unintelligible format. At the byte offsets where we expect a 32-bit block number
specifying the offset for partition three, for instance, there might even be a negative value!
What would newfs do when we tried to create a file system on such a partition? It might
actually skip backwards and overwrite important data unless the programmers took extra
caution to prevent this.

This is why every disk or LUN that is to be used in Solaris must always carry a valid
VTOC. You use the format command to write a valid VTOC (which is called "labelling" in
the format program). You can also actually issue a SCSI "format" instruction to a disk from
the Solaris format command, but this is almost never done since all modern disks come
pre-formatted. All they need is a valid Solaris VTOC. The same is essentially true for other
operating systems as well, since they all need some kind of fixed entry point into the disk's
or LUN's internal data structures, and this fixed entry point must be initialized before the
medium can be used.

Finding New Disks in VxVM3.1.3	

So now that the LUN or disk is working, the OS sees it, and the LUN is even labeled correctly
so the OS does not stumble over some leftover from the previous user. When will VxVM see
this new disk? How do we even know if VxVM sees the disk?

Well, the last one is easy. The command vxdisk list shows all disks that VxVM knows,
one per line, with their access records to the left and their status to the right. Here's an
example:

58

Incorporating Disks into VxVM

vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t10d0s2 auto:none - - online invalid

Apparently in this case, VxVM only sees two disks: Their access records are c0t0d0
(which happens to be the boot disk) and c0t10d0. Will it see new disks if we reboot? Yes,
but that would be very Windows-like, and not very friendly towards the 14,786 users con-
nected to the online banking system that we are currently working on. All we need to do
is tell VxVM to go check for new disks. The right command for this is

vxdisk scandisks

This command could even be further limited to look for just specific new disks, control-
lers and the like, but the given form is the most useful one since it is rare that someone
wants to make VxVM see some of the new disks but not all etc. In these cases, man vxdisk
does a much better job at explaining what command to issue than this book could.

Many of our readers will be surprised because they may be familiar with a different
command to make VxVM scan for new disks. This command is

vxdctl enable

This command (vxdctl stands for Veritas daemon control — it controls the Veritas
Configuration Daemon vxconfigd) does indeed find new disks (and has done so in all
recent releases), but it also does a lot more. It actually does a physical I/O to each disk
to check whether the disk is still accessible. If the disk was previously uninitialized it may
or may not try to re-read the VTOC in order to find a valid Private Region. It may then
decide to read or not to read the Private Region to find out if it is valid or if it has become
invalid etc. It also rebuilds the DMP tree and does a lot of other things. Unfortunately
what exactly it does differs from version to version, so I would like to suggest you start
out with vxdisk scandisks and only use the vxdctl enable command if the new disks
do not pop up right away. Let's try integrating my newly attached disk, which we expect
to be c0t11d0:

vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t10d0s2 auto:none - - online invalid

It's not there, because the OS has not created the device node yet.

# devfsadm	 # make all necessary device nodes
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t10d0s2 auto:none - - online invalid

59

Solaris Disk Handling

It's there, but VxVM's cache does not know it needs to be refreshed. All display com-
mands for VxVM objects read from cached data, as mass storage access could slow the
machine or process down.

# vxdisk scandisks	 # refresh VxVM's cache
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t10d0s2 auto:none - - online invalid
c0t11d0s2 auto:none - - online invalid

Here we are!

What if My New Disk is Not Found?3.1.4	

If vxdisk scandisks and vxdctl enable both fail to yield the desired result then there are
several further steps you can take in order to make VxVM recognize disk changes. Note that
recognition of new LUNs is normally painless, but recognition of disks that had their VTOC
changed, or that had their Private Region overwritten or restored (something we like to
do in VxVM trouble shooting courses) may require further measures. These may also need
to be taken if for instance you get new LUNs that actually have valid Private Regions but
that stem from outdated disk groups which had been freed (or worse: deleted on raw disk
level) from another server before.

These further measures are, in the order they should be tried:

vxdisk scandisks # tells vxconfigd to scan for new disks
vxdctl enable # tells vxconfigd to scan a lot of things for a lot of changes
vxconfigd -k # kills and restarts the configuration daemon
vxconfigd -k -r reset # additionally resets most of the VxVM drivers'
			 # internal data structures
reboot # resets all of VxVM's internal data structures

The last command is usually a no-no and is only necessary if you encounter a bug in
DMP or VxVM or if you are running Cluster Volume Manager, which is much more difficult
to handle in special situations than plain VxVM.

60

Incorporating Disks into VxVM

Controller visible via
cfgadm -la?

Device visible via
cfgadm -o show_FCP_dev -la?

Device visible via
format?

Install device driver
for HBA and/or FC

luxadm -e create_fabric_device
cfgadm -c configure c#::wwpn

SAN or hardware
problem

no

no

yes

yes

no

yes

devfsadm

format or fmthard,
write Solaris label
vxdisk scandisks

1) vxdctl enable
2) vxconfigd -k

3) vxconfigd -k -r reset
4) reboot

Device visible in
vxdisk list?

no

Done
yes

Device visible via
format?

yes

no

Flow chart outlining incorporation of new LUNs into Solaris and Figure 3-1:	
VxVM

61

Solaris Disk Handling

Leaving Physics Behind – Welcome to VxVM!3.1.5	

Now that the new disk is a fully valid member of the Solaris (or other OS) crowd we can
finally incorporate it into VxVM, thus virtualizing it and leaving device physics behind (at
least to the degree possible). Virtualizing a disk is done by one simple command:

vxdisksetup -i <accessname>
vxdisksetup -i c4t9d3

The -i flag will initialize the Private Region of the disk. If the disk had already been
initialized before and need not be re-initialized you can omit the -i flag. For instance, in
the Solaris OS, calling vxdisksetup without -i will just install the Private (and Public)
partitions in the VTOC without initializing the Private Region.

There is one specialty with the accessname that Solaris admins sometimes do not get
right at the first try: The access name does not include the slice number (slice 2) of the
"whole disk" slice. It is merely a path like c4t9d3 rather than c4t9d3s2 The reason for this is
VxVM's cross-platform interoperability: Other OSes simply do may not have slice address-
ing. For example, both HP-UX and AIX have a logical volume management incorporated
into the kernel, so slices look really outdated to them. Since the command syntax is sup-
posed to vary as little as possible between the different UNIX dialects only the common
denominator — the standard addressing by controller, target, and disk — is used.

After treating the disk or LUN with vxdisksetup -i it now has a valid Private Region
and can be incorporated into one and only one disk group. From now on it will be easy for
many chapters until we get to the really hard stuff. The part where light speed is too slow
for us. The part where buffer credits take a big toll on WAN performance. The part where
disks fail and need to be replaced. But all of that is still a long way to go. Now it is just
simply stuff that works, so let us look forward to it! You can skip the rest of the chapter and
proceed with page 71 if you want. In the rest of this chapter we will only delve more deeply
into VxVM disk formats and into what else can be done with the vxdisk command.

62

Incorporating Disks into VxVM

The Full Battleship

VxVM disk handling3.2	

VxVM Disk Formats3.2.1	

What we saw in the example above was this output:

vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t10d0s2 auto:none - - online invalid

The disks' type is auto:none, and their status is online and invalid. What do these
values mean? While the access record should be obvious the type and status are not, so
let's take a little diversion to find out more about those.

A type of auto means that VxVM has received the disk from the operating system by
inquiring the disk device list. Old operating systems sometimes could not do this, so you
had to define your own disk access records. But this is no longer necessary on any current
hardware, so your devices should always be shown as "auto". The sub-type behind auto:
refers to the initialization scheme or "format" that was used to incorporate the LUN into
VxVM. For instance, none means that the disk does not have a Private Region. The subtype
sliced means that Private and Public Region are located on different slices of the disk,
and cdsdisk means that the whole disk is tagged as a Private Region. In our case, neither
disk has a Private Region and both have been auto-discovered so they are both of type
auto:none.

The status column shows two values: online and invalid. The first one refers to the
operating status of this disk. A disk is online only if the OS can access it and the disk has
not been offlined in software by the vxdisk offline command. This is how the software
ON/OFF switch works:

vxdisk offline c0t10d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid

63

VxVM disk handling

c0t10d0s2 auto - - offline
vxdisk online c0t10d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t10d0s2 auto:none - - online invalid

What does the invalid status refer to? It refers not to the general status but instead
to the VxVM-only status. For instance, invalid means that a valid Private Region could
not be found on this disk. If we create a Private Region by initializing the disk using
vxdisksetup -i, then the invalid flag will go away, and the format will change (in this
case, to cdsdisk):

vxdisksetup -i c0t10d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t10d0s2 auto:cdsdisk - - online

cdsdisk and sliced3.2.2	

As you can see the invalid status has disappeared because a valid Private Region was
found. The type and format of auto:cdsdisk expresses that the Private and Public Region
do not reside in separate slices but the most modern disk format is used. CDS stands
for Cross-platform Data Sharing. A CDS-disk is a disk that has been initialized by the
vxdisksetup command with a Private Region spanning all of the disk. But there is more
to it: The vxdisksetup command also created compatibility volume labels for all the major
UNIX-based operating systems so that the disk can be used interchangeably between
Solaris, Linux, AIX, and HP-UX. This is achieved by writing a Solaris-compatible VTOC at
block zero (where Solaris expects its VTOC), and in addition writing an AIX-compatible
volume label at the offset where AIX expects its volume label, and putting a third, HP-UX
compatible volume label at the place where HP-UX expects its volume label. Linux compat-
ibility comes for free because Linux can read Solaris VTOCs and will use it when it sees one.
It was only possible to implement the CDS format because fortunately, these three volume
labels do not reside in overlapping blocks. Windows, for example, uses block zero as the
master boot record. This overlaps with the Solaris VTOC block and because the two formats
are mutually incompatible the Windows version of VxVM will not recognize a CDS disk and
cannot share disk groups with UNIX operating systems.

We can also initialize a disk with different formats than CDS. Before VxVM 4.0 the
default format was sliced. To compare a sliced disk with a CDS disk let us initialize one of
each and compare their VTOCs. First, a look at the CDS disk:

vxdisksetup -i c0t10d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS

64

Incorporating Disks into VxVM

c0t10d0s2 auto:cdsdisk - - online
vxdisksetup -i c0t10d0 format=sliced
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t10d0s2 auto:sliced - - online

prtvtoc /dev/rdsk/c0t10d0s2
* /dev/rdsk/c0t10d0s2 partition map
*
* Dimensions:
* 512 bytes/sector
* 133 sectors/track
* 27 tracks/cylinder
* 3591 sectors/cylinder
* 4926 cylinders
* 4924 accessible cylinders
*
* Flags:
* 1: unmountable
* 10: read-only
*
* First Sector Last
* Partition Tag Flags Sector Count Sector Mount Directory
 2 5 01 0 17682084 17682083
 7 15 01 0 17682084 17682083

Note that partition 7 is identical to partition 2 in size and position – they both cover
the whole disk. Only the tag is different: 5 (backup) for slice 2, and 15 (VxVM Private
Region) for slice 7.

Let's see how much space is left for VxVM. In order to do that, we must put the disk
into a DG and then check the DG for free extents:

vxdg init adg adg01=c0t10d0
vxdg -g adg free
DISK DEVICE TAG OFFSET LENGTH FLAGS
adg01 c0t10d0s2 c0t10d0 0 17616288 -

OK, there are 17616288 blocks free on the CDS disk for VxVM. Now let's compare that
to the sliced layout on the same disk.

vxdg destroy adg
vxdisksetup -i c0t11d0 format=sliced
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t10d0s2 auto:sliced - - online
prtvtoc /dev/rdsk/c0t10d0s2
* /dev/rdsk/c0t10d0s2 partition map

65

VxVM disk handling

*
* Dimensions:
* 512 bytes/sector
* 133 sectors/track
* 27 tracks/cylinder
* 3591 sectors/cylinder
* 4926 cylinders
* 4924 accessible cylinders
*
* Flags:
* 1: unmountable
* 10: read-only
*
* Unallocated space:
* First Sector Last
* Sector Count Sector
* 0 3591 3590
*
* First Sector Last
* Partition Tag Flags Sector Count Sector Mount Directory
 2 5 01 0 17682084 17682083
 3 15 01 3591 68229 71819
 4 14 01 71820 17610264 17682083

We see that cylinder zero is left unallocated; the Private Region starts at sector 3591
which is exactly one cylinder offset from zero (see the "Dimensions" section at the begin-
ning of the output as well as the "Unallocated space" section in the middle). The Private
Region itself resides on slice 3 and has tag 15, while the Public Region resides on slice 4
and has tag 14 (the identifier tag for Public Region).

.
vxdg init adg adg01=c0t11d0
VxVM vxdg ERROR V-5-1-6478 Device c0t10d0s2 cannot be added to a CDS disk group

Oops. The default format for disk groups is CDS. Only DGs that have the CDS flag can
be cross-imported between platforms. In order for that to work, all the disks in such a DG
must have the CDS layout. If we want to use sliced disks to create a DG, then we must turn
the CDS flag for the disk group off by specifying cds=off when creating the DG.

vxdg init adg adg01=c0t11d0 cds=off
vxdg -g adg free
DISK DEVICE TAG OFFSET LENGTH FLAGS
adg01 c0t10d0s2 c0t10d0 0 17610256 -

In this case we are left with 17610256 free blocks for VxVM. Due to the empty cylinder
and varying internal size of the Private Region the free block count differs between CDS
and sliced layout.

66

Incorporating Disks into VxVM

How to Mix CDS and Sliced Disks in a Disk Group?3.2.3	

Since the advent of the cdsdisk format there has been a lot of confusion about what to use
when and how to mix sliced disks and cdsdisks in the same disk group. The concept is – as
always – rather straightforward. But this has been obfuscated by lack of understanding
of the concepts and by the confusing names: Disk media can be of CDS format, and disk
groups can have a CDS flag set. They sound the same, but they are not the same. So let us
clear this up and reveal its simplicity:

Idea: If disk metadata (VTOC, label) were cross-platform readable then because VxVM
is also cross-platform, a VxVM disk group could be used cross-platform.

Implementation: VxVM for HP-UX knows how to write a HP-UX compatible label,
VxVM for AIX knows how to write an AIX compatible label, VxVM for Solaris knows how
to write a Solaris compatible label. Combine this cross-platform know-how and have
vxdisksetup write all three label types on every disk.

Problem: If there is a legacy disk of sliced format in a disk group then this disk will not
be cross-platform readable and accordingly, the disk group can not be imported on other
platforms. Do we want VxVM to find out after importing 999 of 1000 disks in a disk group
that the 1000th disk is sliced and the disk group cannot be imported? No, we don't. We
want to know before trying to import a DG if the import is going to fail anyway.

Solution: Create an extra flag in the disk group data structure that can be set to ON
if and only if all disks in the disk group are cross-platform shareable. Make this value the
default for DG creation so that the DG's functionality is automatically enhanced by the CDS
feature. If the users do not want CDS to work they can (or must) switch it off be setting
the CDS flag to OFF for the DG like this:

vxdg -g mydg set cds=off

Limitation: Whenever a sliced disk is added to a disk group that disk group's CDS flag
must first be reset to OFF. Likewise, when creating a new DG from sliced disks the flag must
be reset in the disk group creation process by specifying cds=off.

Unfortunately, the latter is not done automatically by VxVM.
Note that a Solaris boot disk is always sliced because the OS needs to find a partition

with the root tag to boot from. So the CDS format cannot be used for the boot disk.
If a disk is initialized with a sliced layout then enough space is reserved to be able

to convert it into a cdsdisk later. That is why you saw the first cylinder unallocated from
the sliced disk in the example before. Conversion to cdsdisk layout is done by the utility
/usr/lib/vxvm/bin/vxcdsconvert.

Other Disk Formats3.2.4	

In addition to cdsdisk and sliced there are two more formats: none and simple. The none
format is actually not a real format, i.e. you cannot specify it to vxdisksetup -i. It is dis-
played if no Private Region can be found on the disk.

The simple format can be specified to vxdisksetup and yields a VTOC that looks simi-
lar to that of a cdsdisk, i.e. it has Private and Public Region together in one single, large

67

VxVM disk handling

slice. The difference is that the slice is not slice 7 as for a cdsdisk, but slice 3, and the first
cylinder is again unallocated in case a later conversion to cdsdisk is desired. A simple disk
also does not hold the AIX and HP/UX compatibility labels.

Come to think of it: why would anyone ever use a sliced disk layout except for a
boot disk, where it is required to use individual slices? Keeping Private and Public Regions
separate in a way that is visible to the operating system and user is not optimal and seems
unnecessary. Use cdsdisk whenever possible!

Encapsulation Overview – Integrating Legacy Data3.2.5	

The vxdisksetup command alters the partition table in a rather radical way: all previous
data partitions are wiped off the disk unless one of them is currently mounted! If we do
not want to copy the data from our partition-based file system to a new volume-based one,
how do we get the data under VxVM control?

The answer is encapsulation. This is a different way of bringing a LUN or disk under
VxVM control. The idea is to have VxVM find some free space on the disk where it can
put its Private Region (which is only a few MB in size), and find one (for simple layout) or
two (for sliced layout) free slots in the VTOC in order to store the pointers to the Private
Region and Public Region. Then, the encapsulation process reads the information about
existing extents (i.e. partitions or slices) from the VTOC and maps them into VxVM subdisk
objects (which are, as you know, nothing but extents). It then writes them into the disk
group's Private Region database. Additionally, so that the user can access the subdisks,
each subdisk is put into a straight concat plex which is then put into a normal volume
object. All this is done by one simple command: vxencap. The names for the virtual objects
are appropriately chosen by the encapsulation command if they can be derived from their
partition tags: rootvol, swapvol etc. or they are simply derived from the controller paths
that were used to mount them.

To sum up, encapsulation consists of the following steps:

1)	 Allocate free space for the Private Region

2)	 Allocate free VTOC slots for Public and Private Region

3)	 Map existing slices to subdisks and associate them with plexes and volumes

4)	 Remove all slices from the VTOC that are not required during the boot phase

5)	 Modify /etc/vfstab to update slice mounts to mounts of the new volumes

6)	 Demand a reboot from the user if the root disk has been encapsulated, or wait for the
user to reboot if a data disk has been encapsulated.

68

Incorporating Disks into VxVM

VM Disk
VM Disk

Disk Group
VM Disk

Disk Group

VM Disk

Solaris Disk

Data slices exist, must be
integrated into VxVM

(e.g. in case of boot disk)

VM Disk
Disk is marked fully used by

VxVM's private / public
region (sliced), each slice

extent is mapped 1:1 into a
subdisk, a linear addressed
plex is added and attached

to a volume.

v
x
e
n
c
a
p

vxdg adddisk / vxdg init

/

swap

/var

Disk becomes member of
the persistent, movable

storage repository called a
"disk group"

rootvol

swapvol

var

Private region allocated
from free disk space or end

of swap

Encapsulating a disk creates volumes from existing partitions by Figure 3-2:
allocating subdisks that line up exactly with the original location
of the slices, associating these subdisks with plex objects and
attaching them to volume objects.

After the reboot you can mount the new volumes at the same place where you used
to have the slices mounted. Because they are no longer bound to their slice legacy you
can now do cool stuff with the volumes, like change their layout, mirror them, resize them

69

VxVM disk handling

or move them to somewhere else. Of course this does not work well with those volumes
that are required by the boot process because their VTOC entries must not be deleted and
therefore these volumes are stuck to legacy behavior. There are ways around this but they
are what hackers describe as non-trivial.

Encapsulation of a disk is performed by issuing the vxencap command and passing it
the right parameters: accessname, target DG and – if applicable – a flag to create the tar-
get DG and its format. Here are two examples, the first one for a standard disk, the second
one for the root disk:

# vxencap -g mydg mydg02=c0t2d0	 # mydg exists, so add this disk to it
vxencap -g bootdg -f sliced -c rootdisk=c0t0d0 # -c: create new "bootdg"

Read more about encapsulation in Albrecht Scriba's dedicated chapter beginning on
page 319, which should leave no question about encapsulation unanswered. It takes you
on a tour so low-level that it will show you how to encapsulate a whole disk manually,
without using the vxencap command! It will show you precisely and in detail how VxVM's
volume management works, how it addresses its storage and how one can incorporate data
from any other volume management software provided the basic addressing schemes are
compatible (i.e. no bit-slicing or content-addressing or similarly weird stuff is involved.

Summary3.2.6	
You should now know much more than you ever wanted to know about initializing disks
for VxVM. If you are still hungry for more, please read the man pages for vxdisk and
vxdisksetup. There is a lot more to vxdisk than what is written here, but this book was
intended not to become more than twice the weight of a 2008 notebook computer…

